Средние величины и показатели вариации. Как рассчитать среднюю величину Что такое средние величины

5.1. Понятие средней величины

Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.

Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.

Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.

Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.

Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.

5.2. Виды средних и способы их вычисления

Рассмотрим теперь виды средних величин, особенности их исчисления и области применения. Средние величины делятся на два больших класса: степенные средние, структурные средние.

К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.

В качестве структурных средних рассматриваются мода и медиана.

Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:

где X i – варианта (значение) осредняемого признака;

n – число вариант.

Взвешенная средняя считается по сгруппированным данным и имеет общий вид

,

где X i – варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m – показатель степени средней;
f i – частота, показывающая, сколько раз встречается i-e значение осредняемого признака.

Приведем в качестве примера расчет среднего возраста студентов в группе из 20 человек:


Средний возраст рассчитаем по формуле простой средней:

Сгруппируем исходные данные. Получим следующий ряд распределения:

В результате группировки получаем новый показатель – частоту, указывающую число студентов в возрасте Х лет. Следовательно, средний возраст студентов группы будет рассчитываться по формуле взвешенной средней:

Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m –> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.

Формулы степенных средних приведены в табл. 4.4.

Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:

В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.

Таблица 5.1

Виды степенных средних

Вид степенной
средней
Показатель
степени (m)
Формула расчета
Простая Взвешенная
Гармоническая -1
Геометрическая 0
Арифметическая 1
Квадратическая 2
Кубическая 3

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности – носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Иначе говоря, средняя величина должна исчисляться так, чтобы при замене каждого индивидуального значения осредняемого показателя его средней величиной оставался без изменения некоторый итоговый сводный показатель, связанный тем или другим образом с осредняемым . Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.

Формула средней геометрической

используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.

Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i 1 , i 2 , i 3 ,..., i n . Очевидно, что объем производства в последнем году определяется начальным его уровнем (q 0) и последующим наращиванием по годам:

q n =q 0 × i 1 × i 2 ×...×i n .

Приняв q n в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению

Отсюда

5.3. Структурные средние

Особый вид средних величин – структурные средние – применяется для изучения внутреннего строения рядов распределения значений признака, а также для оценки средней величины (степенного типа), если по имеющимся статистическим данным ее расчет не может быть выполнен (например, если бы в рассмотренном примере отсутствовали данные и об объеме производства, и о сумме затрат по группам предприятий).

В качестве структурных средних чаще всего используют показатели моды – наиболее часто повторяющегося значения признака – и медианы – величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой – не меньше его.

Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:

,

где X Me – нижняя граница медианного интервала;
h Me – его величина;
(Sum m)/2 – половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
S Me-1 – сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
m Me – число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении).

В нашем примере могут быть получены даже три медианных значения – исходя из признаков количества предприятий, объема продукции и общей суммы затрат на производство:

Таким образом, у половины предприятий уровень себестоимость единицы продукции превышает 125,19 тыс. руб., половина всего объема продукции производится с уровнем затрат на изделие больше 124,79 тыс. руб. и 50 % общей суммы затрат образуется при уровне себестоимости одного изделия выше 125,07 тыс. руб. Заметим также, что наблюдается некоторая тенденция к росту себестоимости, так как Ме 2 = 124,79 тыс. руб., а средний уровень равен 123,15 тыс. руб.

При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как

где Х Mo – нижнее значение модального интервала;
m Mo – число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
m Mo -1 – то же для интервала, предшествующего модальному;
m Mo+1 – то же для интервала, следующего за модальным;
h – величина интервала изменения признака в группах.

Для нашего примера можно рассчитать три модальных значения исходя из признаков числа предприятий, объема продукции и суммы затрат. Во всех трех случаях модальный интервал один и тот же, так как для одного и того же интервала оказываются наибольшими и число предприятий, и объем продукции, и общая сумма затрат на производство:

Таким образом, чаще всего встречаются предприятия с уровнем себестоимости 126,75 тыс. руб., чаще всего выпускается продукция с уровнем затрат 126,69 тыс. руб., и чаще всего затраты на производство объясняются уровнем себестоимости в 123,73 тыс. руб.

5.4. Показатели вариации

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (X max) и минимальным (X min) наблюдаемыми значениями признака:

H=X max - X min .

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s 2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s 2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

Боярский А.Я. Теоретические исследования по статистике: Сб. Науч. Трудов.– М.: Статистика,1974. С. 19–57.

Предыдущая

По дисциплине: Статистика

Вариант № 2

Средние величины, применяемые в статистике

Введение………………………………………………………………………….3

Теоретическое задание

Средняя величина в статистике, ее сущность и условия применения.

1.1. Сущность средней величины и условия применения………….4

1.2. Виды средних величин……………………………………………8

Практическое задание

Задача 1,2,3………………………………………………………………………14

Заключение……………………………………………………………………….21

Список используемой литературы……………………………………………...23

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической. В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Статистика, как известно, изучает массовые социально-экономические явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся) признакам статистика использует средние величины.

Сущность средней величины

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку. В экономической практике используется широкий круг показателей, вычисленных в виде средних величин.

Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.

Средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные отклонения индивидуальных величин в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная тенденция развития, необходимость, закономерность. Средние величины позволяют сравнивать показатели, относящиеся к совокупностям с различной численностью единиц.

В современных условиях развития рыночных отношений в экономике средние служат инструментом изучения объективных закономерностей социально-экономических явлений. Однако в экономическом анализе нельзя ограничиваться лишь средними показателями, так как за общими благоприятными средними могут скрываться и крупные серьезные недостатки в деятельности отдельных хозяйствующих субъектов, и ростки нового, прогрессивного. Например, распределение населения по доходу позволяет выявлять формирование новых социальных групп. Поэтому наряду со средними статистическими данными необходимо учитывать особенности отдельных единиц совокупности.

Средняя величина являются равнодействующей всех факторов, оказывающих влияние на изучаемое явление. То есть, при расчете средних величин взаимопогашаются влияние случайных (пертурбационных, индивидуальных) факторов и, таким образом, возможно определение закономерности, присущей исследуемому явлению. Адольф Кетле подчеркивал, что значение метода средних величин состоит в возможности перехода от единичного к общему, от случайного к закономерному, и существование средних величин является категорией объективной действительности.

Статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией. Другое свойство массовых явлений - присущая им близость характеристик отдельных явлений. Итак, взаимодействие элементов совокупности приводит к ограничению вариации хотя бы части их свойств. Эта тенденция существует объективно. Именно в её объективности заключается причина широчайшего применения средних величин на практике и в теории.

Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчёте на единицу качественно однородной совокупности.

В экономической практике используется широкий круг показателей, вычисленный в виде средних величин.

С помощью метода средних величин статистика решает много задач.

Главное значение средних состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

Если средняя величина обобщает качественно однородные значения признака, то она является типической характеристикой признака в данной совокупности.

Однако неправильно сводить роль средних величин только к характеристике типичных значений признаков в однородных по данному признаку совокупностях. На практике значительно чаще современная статистика использует средние величины, обобщающие явно однородные явления.

Средняя величина национального дохода на душу населения, средняя урожайность зерновых культур по всей стране, среднее потребление разных продуктов питания – это характеристики государства как единой народнохозяйственной системы, это так называемые системные средние.

Системные средние могут характеризовать как пространственные или объектные системы, существующие одномоментно (государство, отрасль, регион, планета Земля и т.д.), так и динамические системы, протяжённые во времени (год, десятилетие, сезон и т.д.).

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности. Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные. Например, курс акций корпорации в целом определяется ее финансовым положением. В то же время, в отдельные дни и на отдельных биржах эти акции в силу сложившихся обстоятельств могут продаваться по более высокому или заниженному курсу. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенностей, присущих отдельным единицам.

Вычисление среднего - один из распространённых приёмов обобщения; средний показатель отражает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости.

Средняя – это сводная характеристика закономерностей процесса в тех условиях, в которых он протекает.

Каждая средняя характеризует изучаемую совокупность по какому-либо одному признаку, но для характеристики любой совокупности, описания её типических черт и качественных особенностей нужна система средних показателей. Поэтому в практике отечественной статистики для изучения социально-экономических явлений, как правило, исчисляется система средних показателей. Так, например, показатель средней заработной платы оцениваются совместно с показателями средней выработки, фондовооружённости и энерговооружённости труда, степенью механизации и автоматизации работ и др.

Средняя должна вычисляться с учётом экономического содержания исследуемого показателя. Поэтому для конкретного показателя, используемого в социально экономическом анализе, можно исчислить только одно истинное значение средней на базе научного способа расчёта.

Средняя величина это один из важнейших обобщающих статистических показателей, характеризующий совокупность однотипных явлений по какому-либо количественно варьирующему признаку. Средние в статистике это обобщающие показатели, числа, выражающие типичные характерные размеры общественных явлений по одному количественно варьирующему признаку.

Виды средних величин

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.

Средняя арифметическая

Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объём признака в совокупности остаётся неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При её вычислении общий объём признака мысленно распределяется поровну между всеми единицами совокупности.

Средняя арифметическая применяется, если известны значения осредняемого признака (х) и количество единиц совокупности с определённым значением признака (f).

Средняя арифметическая бывает простой и взвешенной.

Средняя арифметическая простая

Простая используется, если каждое значение признака х встречается один раз, т.е. для каждого х значение признака f=1, или если исходные данные не упорядочены и неизвестно, сколько единиц имеют определённые значения признака.

Формула средней арифметической простой имеет вид:

где - средняя величина; х – значение осредняемого признака (варианта), - число единиц изучаемой совокупности.

Средняя арифметическая взвешенная

В отличие от простой средней средняя арифметическая взвешенная применяется, если каждое значение признака х встречается несколько раз, т.е. для каждого значения признака f≠1. Данная средняя широко используется при исчислении средней на основании дискретного ряда распределения:

где - число групп, х – значение осредняемого признака, f- вес значения признака (частота, если f – число единиц совокупности; частость, если f- доля единиц с вариантой х в общем объёме совокупности).

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной. Применяется она тогда, когда необходимые веса (f i) в исходных данных не заданы непосредственно, а входят сомножителем в одни из имеющихся показателей (т.е. тогда, когда известен числитель исходного соотношения средней, но неизвестен его знаменатель).

Средняя гармоническая взвешенная

Произведение xf даёт объём осредняемого признака х для совокупности единиц и обозначается w. Если в исходных данных имеются значения осредняемого признака х и объём осредняемого признака w, то для расчёта средней применяется гармоническая взвешенная:

где х – значение осредняемого признака х (варианта); w – вес варианты х, объем осредняемого признака.

Средняя гармоническая не взвешенная (простая)

Эта форма средней, используемая значительно реже, имеет следующий вид:

где х – значение осредняемого признака; n – число значений х.

Т.е. это обратная величина средней арифметической простой из обратных значений признака.

На практике средняя гармоническая простая применяется редко, в тех случаях, когда значения w для единиц совокупности равны.

Средняя квадратическая и средняя кубическая

В ряде случаев в экономической практике возникает потребность расчета среднего размера признака, выраженного в квадратных или кубических единицах измерения. Тогда применяется средняя квадратическая (например, для вычисления средней величины стороны и квадратных участков, средних диаметров труб, стволов и т.п.) и средняя кубическая (например, при определении средней длины стороны и кубов).

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной, простой или взвешенной.

Средняя квадратическая простая

Простая используется, если каждое значение признака х встречается один раз, в общем имеет вид:

где - квадрат значений осредняемого признака; - число единиц совокупности.

Средняя квадратическая взвешенная

Средняя квадратическая взвешенная применяется, если каждое значение осредняемого признака х встречается f раз:

,

где f – вес варианты х.

Средняя кубическая простая и взвешенная

Средняя кубическая простая является кубическим корнем из частного от деления суммы кубов отдельных значений признака на их число:

где - значения признака, n- их число.

Средняя кубическая взвешенная:

,

где f-вес варианты х.

Средние квадратическая и кубическая имеют ограниченное применение в практике статистики. Широко пользуется статистика средней квадратической, но не из самих вариантов x, и из их отклонений от средней при расчете показателей вариации.

Средняя может быть вычислена не для всех, а для какой-либо части единиц совокупности. Примером такой средней может быть средняя прогрессивная как одна из частных средних, вычисляемая не для всех, а только для "лучших" (например, для показателей выше или ниже средних индивидуальных).

Средняя геометрическая

Если значения осредняемого признака существенно отстоят друг от друга или заданы коэффициентами (темпы роста, индексы цен), то для расчёта применяют среднюю геометрическую.

Средняя геометрическая исчисляется извлечением корня степени и из произведений отдельных значений - вариантов признака х:

где n - число вариантов; П - знак произведения.

Наиболее широкое применение средняя геометрическая получила для определения средних темпов изменения в рядах динамики, а также в рядах распределения.

Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Практическое задание

Задача №1

Определить средний курс покупки и средний курс продажи одного и $ США

Средний курс покупки

Средний курс продажи

Задача №2

Динамика объема собственной продукции общественного питания Челябинской области за 1996-2004 года представлена в таблице в сопоставимых ценах (млн. руб.)

Произвести смыкание рядов А и В. Для анализа ряда динамики производства готовой продукции вычислить:

1. Абсолютные приросты, темпы роста и прироста цепные и базисные

2. Среднегодовое производство готовой продукции

3. Среднегодовой темп роста и прироста продукции фирмы

4. Произвести аналитическое выравнивание ряда динамики и вычислить прогноз на 2005 год

5. Изобразить графически ряд динамики

6. Сделать вывод по результатам динамики

1) уi Б = уi-у1 уi Ц = уi-у1

y2 Б = 2,175 – 2,04 y2 Ц = 2,175 – 2, 04 = 0,135

y3Б = 2,505 – 2,04 y3 Ц = 2, 505 – 2,175 = 0,33

y4 Б = 2,73 – 2,04 y4 Ц = 2, 73 – 2,505 = 0,225

y5 Б = 1,5 – 2,04 y5 Ц = 1, 5 – 2,73 = 1,23

y6 Б = 3,34 – 2,04 y6 Ц = 3, 34 – 1,5 = 1,84

y7 Б = 3,6 3 – 2,04 y7 Ц = 3, 6 3 – 3,34 = 0,29

y8 Б = 3,96 – 2,04 y8 Ц = 3, 96 – 3,63 = 0,33

y9 Б = 4,41–2,04 y9 Ц = 4, 41 – 3,96 = 0,45

Тр Б2 Тр Ц2

Тр Б3 Тр Ц3

Тр Б4 Тр Ц4

Тр Б5 Тр Ц5

Тр Б6 Тр Ц6

Тр Б7 Тр Ц7

Тр Б8 Тр Ц8

Тр Б9 Тр Ц9

Тр Б = (ТпрБ *100%) – 100%

Тр Б2 = (1,066*100%) – 100% = 6,6%

Тр Ц3 = (1,151*100%) – 100% = 15,1%

2) yмлн.руб. – средняя производительность продукции

2,921 + 0,294*(-4) = 2,921-1,176 = 1,745

2,921 + 0,294*(-3) = 2,921-0,882 = 2,039

(yt-y) = (1,745-2,04) = 0,087

(yt-yt) = (1,745-2,921) = 1,382

(y-yt) = (2,04-2,921) = 0,776

Tp

Бy

y2005=2,921+1,496*4=2,921+5,984=8,905

8,905+2,306*1,496=12,354

8,905-2,306*1,496=5,456

5,456 2005 12,354


Задача №3

Статистические данные оптовых поставок продовольственных и непродовольственных и розничную торговую сеть области в 2003 и 2004 годах представлены в соответствующих графиках.

По данным таблицы 1 и 2 требуется

1. Найти общий индекс оптовой поставки продовольственных товаров в фактических ценах;

2. Найти общий индекс фактического объема поставки продовольственных товаров;

3. Сравнить общие индексы и сделать соответствующий вывод;

4. Найти общий индекс поставки непродовольственных товаров в фактических ценах;

5. Найти общий индекс физического объема поставки непродовольственных товаров;

6. Сравнить полученные индексы и сделать вывод по непродовольственным товарам;

7. Найти сводный общий индексы поставки всей товарной массы в фактических ценах;

8. Найти сводный общий индекс физического объема (по всей товарной массе товаров);

9. Сравнить полученный сводные индексы и сделать соответствующий вывод.

Базисный период

Отчетный период (2004)

Поставки отчетного периода в ценах базисного периода

1,291-0,681=0,61= - 39

Заключение

В заключении подведем итоги. Средние величины - это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте благодаря этому средняя получает большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего - проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель - это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является по тому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности. Средняя величина является отражения значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка

Список используемой литературы

1. Гусаров, В.М. Теория статистики качеством [Текст]: учеб. пособие / В.М.

Гусаров пособие для вузов. - М.,1998

2. Едронова, Н.Н. Общая теория статистики [Текст]: учебник / Под ред. Н.Н. Едроновой - М.: Финансы и статистика 2001 - 648 с.

3. Елисеева И.И., Юзбашев М.М. Общая теория статистики [Текст]: Учебник / Под ред. чл.-корр. РАН И.И.Елисеевой. – 4-е изд., перераб. и доп. - М.: Финансы и статистика, 1999. - 480с.: ил.

4. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: [Текст]: Учебник. - М.: ИНФРА-М, 1996. - 416с.

5. Ряузова, Н.Н. Общая теория статистики [Текст]: учебник / Под ред. Н.Н.

Ряузова­ - М.: Финансы и статистика, 1984.


Гусаров В.М. Теория статистики: Учебн. Пособие для вузов. - М.,1998.-С.60.

Елисеева И.И., Юзбашев М.М. Общая теория статистики. - М.,1999.-С.76.

Гусаров В.М. Теория статистики: Учебн. Пособие для вузов. -М.,1998.-С.61.

Средней величиной называется статистический показатель, который дает обобщенную характеристику однородных .

Величина средней дает обобщающую количественную характеристику всей совокупности и характеризует ее в отношении данного признака.

Так, например, средняя дает обобщающую количественную характеристику состояния оплаты труда рассматриваемой совокупности работников. Кроме того, используя средние величины, имеется возможность сопоставлять различные информационные совокупности. Так, например, можно сравнивать различные организации по уровню производительности труда, а также по уровню , и по другим показателям.

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака некоторой уравновешенной средней величиной .

Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:

Операций.

Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.

Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.

Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности.

Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:

  1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.
  2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.

Виды средних величин

Средние величины делятся на два больших класса: степенные средние и структурные средние

Степенные средние: Структурные средние:

Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.

Исходной базой расчета и ориентиром правильности выбора формы средней величины являются экономические соотношения, выражающие смысл средних величин и взаимосвязь между показателями.

Расчет некоторых средних величин:

  • Средняя заработная плата 1 работника = Фонд заработной платы / Число работников
  • Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции
  • Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции
  • Средняя урожайность = Валовый сбор / посевная площадь
  • Средняя производительность труда = объем продукции, работ, услуг / Отработанное время
  • Средняя трудоемкость = отработанное время / объем продукции, работ, услуг
  • Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг
  • Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов
  • Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала
  • Средний процент брака = (стоимость бракованной продукции / Стоимость всей произведенной продукции) * 100%

Степенные средние величины

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными .
Если вариант встречается один раз, расчеты проводим по средней простой (например зарплата в 3 тыс.руб. встречается только у одного рабочего), а если вариант повторяется неодинаковое число раз, то есть имеет разные

Тема 3. Метод средних величин

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности.
Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности. Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности. Начиная У. Петти, средние величины стали рассматриваться в качестве основного приема статистического анализа.

Общие принципы применения средних величин :

1) необходим обоснованный выбор единицы совокупности, для которой рассчитывается средняя величина;

2) при определении средней величины нужно исходить из качественного содержания осредняемого признака, учитывать взаимосвязь исследуемых признаков, а также имеющиеся для расчета данные;

3) средние величины должны рассчитываться по качественно однородным совокупностям, которые получают методом группировок, предполагающим расчёт системы обобщающих показателей;

4) общие средние должны подкрепляться групповыми средними.

В зависимости от характера первичных данных, области применения и способа расчета в статистике различают следующие основные виды средних :

1) степенные средние (средняя арифметическая, гармоническая, геометрическая, средняя квадратическая и кубическая);

2) структурные (непараметрические) средние (мода и медиана).

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаются теорией средних .

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Формулы расчёта средних величин представлены в таблице 3.1.



Таблица 3.1 – Формулы расчёта средних величин

Виды средних величин Формулы расчёта
простая взвешенная
1. Средняя арифметическая
2. Средняя гармоническая
3. Средняя геометрическая
4. Средняя квадратическая

Обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака).

Очевидно, что различные средние выводятся из общей формулы степенной средней (3.1) :

при k = + 1 - средняя арифметическая; k = -1 - средняя гармоническая; k = 0 - средняя геометрическая; k = +2 - средняя квадратическая.

Средние величины бывают простые и взвешенные. Взвешенными средними называются величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность; в связи с этим каждый вариант приходится умножать на эту численность. «Весами» при этом выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней .

Если исследуется совокупность с качественно однородными признаками, то средняя величина выступает здесь как типическая средняя. Например, для групп работников определенной отрасли с фиксированным уровнем дохода определяется типическая средняя расходов на предметы первой необходимости.

При исследовании совокупности с качественно разнородными признаками на первый план может выступить нетипичность средних показателей. Такими, к примеру, являются средние показатели произведенного национального дохода на душу населения (разные возрастные группы). Средние величины при этом обобщают качественно разнородные значения признаков или системных пространственных совокупностей (международное сообщество, континент, государство, регион, район и т.д.) или динамических совокупностей, протяженных во времени (век, десятилетие, год, сезон и т.д.). Такие средние величины называют системными средними.

В итоге правильный выбор средней величины предполагает такую последовательность:

а) установление обобщающего показателя совокупности;

б) определение для данного обобщающего показателя математического соотношения величин;

в) замена индивидуальных значений средними величинами;

г) расчет средней с помощью соответствующего уравнения.

3.2 Средняя арифметическая и её свойства и техника исчисления. Средняя гармоническая

Средняя арифметическая – самый распространенный вид средней величины; она исчисляется в тех случаях, когда объем усредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Важнейшие свойства средней арифметической:

1. Произведение средней на сумму частот всегда равно сумме произведений вариант (отдельных значений) на частоты.

2. Если от каждой варианты отнять (прибавить) какое-либо произвольное число, то новая средняя уменьшится (увеличится) на то же число.

3. Если каждую варианту умножить (разделить) на какое-то произвольное число, то новая средняя увеличится (уменьшится) во столько же раз

4. Если все частоты (веса) разделить или умножить на какое-либо число, то средняя арифметическая от этого не изменится.

5. Сумма отклонений отдельных вариантов от средней арифметической всегда равняется нулю.

Можно из всех значений признака вычесть произвольную постоянную величину (лучше значение серединной варианты или варианты с наибольшей частотой), полученные разности сократить на общий множитель (лучше на величину интервала), а частоты выразить частностями (в процентах) и исчисленную среднюю умножить на общий множитель и прибавить произвольную постоянную величину.
Этот способ расчета средней арифметической называется способом расчета от условного нуля .

Среднюю гармоническую называют обратной средней арифметической, поскольку эта величина получается при k = -1. Простая средняя гармоническая используется, когда веса значений признака одинаковы. К примеру, нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, вычисляем среднюю скорость:

В статистической практике чаще используется средняя гармоническая взвешенная – для тех случаев, когда веса (или объемы явлений) по каждому признаку не равны, а в исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров (таблица 3.2).

Таблица 3.2 – Исходные данные

Получаем:

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

Если при исчислении средней цены за веса принять количество товаров, то верный результат дает формула средней арифметической взвешенной. Если же в качестве весов будем применять стоимость партий, то верный результат дает средняя гармоническая.
Т. е., средняя гармоническая является не особым видом средней, а скорее особым методом расчета средней арифметической. В статистике всё же принято выделять среднюю гармоническую как отдельный вид средней, т.к. с ее помощью может быть упрощена техника расчета средней арифметической и, что более важно, учтен характер имеющегося статистического материала.

Правильность выбора формы средней (арифметической или гармонической) может быть проверена также дополнительным критерием : если в качестве весов выступают абсолютные величины, всякие промежуточные действия при расчете средней должны давать значимые показатели. Например, для расчета средней цены умножением цены на количество товаров получается их стоимость. А деление стоимости товаров на их цены дает количество товаров.

С помощью гармонической средней в статистике также определяется средний процент выполнения плана (по данным фактического выполнения плана), средние затраты времени на выполнение операций (по данным о средних затратах времени на одну операцию и общее время работы по отдельным работникам) и т.д.

Средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000).

Средняя квадратическая применяется для измерения вариации признака в совокупности (расчета среднего квадратического отклонения).

В статистике действует правило мажорантности средних:

Х гарм. < Х геом. < Х арифм. < Х квадр. < Х куб.

В данной главе описывается назначение средних величин, рассматриваются их основные виды и формы, методика расчета. При изучении представленного материала необходимо усвоить требования к построению средних величин, так как их соблюдение позволяет использовать эти величины как типические характеристики значений признака по совокупности однородных единиц.

Формы и виды средних величин

Средняя величина представляет собой обобщенную характеристику уровня значений признака, которая получена в расчете на единицу совокупности. В отличие от относительной величины, которая является мерой соотношения показателей, средняя величина служит мерой признака на единицу совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть существенные и случайные. Например, ставки процента по банковским ссудам определяются исходными для всех кредитных организаций факторами (уровень резервных требований и базовая ставка процента gо ссудам, предоставляемым коммерческим банкам центральным банком, и др.), а также особенностями каждой конкретной сделки в зависимости от риска, присущего данной ссуде, ее размера и срока погашения, издержек по оформлению ссуды и контролю за ее погашением и др.

В средней величине обобщаются индивидуальные значения признака и отражается влияние общих условий, наиболее характерных для данной совокупности в конкретных условиях места и времени. Сущность средней в том и заключается, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Средняя величина будет отражать типичный уровень признака в данной совокупности единиц, когда она рассчитана по качественно однородной совокупности. В связи с этим метод средних используют в сочетании с методом группировок.

Средние величины, характеризующие совокупность в целом, называют общими, а средние, отражающие особенность группы или подгруппы, – групповыми.

Сочетание общих и групповых средних позволяет проводить сравнения во времени и пространстве, существенно расширяет границы статистического анализа. Например, при подведении итогов переписи 2002 г. было установлено, что для России, как и для большинства европейских стран, характерно старение населения. По сравнению с переписью 1989 г. средний возраст жителей страны увеличился на три года и составил 37,7 года, мужчин – 35,2 года, женщин – 40,0 лет (по данным 1989 г. эти показатели соответственно были 34,7, 31,9 и 37,2 лет). По данным Росстата, ожидаемая продолжительность жизни при рождении в 2011 г. мужчин – 63 года, женщин – 75,6 лет.

Каждая средняя отражает особенность изучаемой совокупности по какому-то одному признаку. Для принятия практических решений, как правило, необходима характеристика совокупности по нескольким признакам. В этом случае используют систему средних величин.

Например, для достижения должного уровня доходности операций при приемлемом уровне риска банковской деятельности средние ставки процента по выданным кредитам устанавливают с учетом средних ставок процента по депозитам и другим финансовым инструментам.

Форма, вид и методика расчета средней величины зависят от поставленной цели исследования, вида и взаимосвязи изучаемых признаков, а также от характера исходных данных. Средние величины делятся на две основные категории:

  • 1) степенные средние;
  • 2) структурные средние.

Формула средней определяется значением степени применяемой средней. С увеличением показателя степени k возрастает соответственно средняя величина.

1. Средняя гармоническая ():

2. Средняя геометрическая ():

3. Средняя арифметическая ():

4. Средняя квадратическая ():

Правило мажорности средних величин следующее:

Наиболее известный и распространенный вид средней – средняя арифметическая величина. Среднюю гармоническую часто рассматривают как величину, обратную средней арифметической. Среднюю квадратическую широко используют при расчете показателей вариации, а среднюю геометрическую – при анализе динамики.