Способ очистки сточных вод от фосфатов. Смотрим, откуда цинк, азот, фосфор и железо в сточных водах частного дома Как нейтрализовать фосфаты в сточной воде

Под общим фосфором понимают сумму минерального и органического фосфора. Так же, как и для азота, обмен фосфором между его минеральными и органическими формами, с одной стороны, и живыми организмами – с другой – является основным фактором, определяющим его концентрацию. В природных и сточных водах фосфор может присутство­вать в разных видах. В растворенном состоянии (иногда говорят – в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н 3 РО 4) и ее анионов (Н 2 РО 4 - , НРО 4 2- , РО 4 3-), в виде мета- , пиро - и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разно­ образные фосфор­органические соединения – нуклеиновые кис­ лоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфор­органическим соединени­ям относятся также некоторые пестициды.

Фосфор может содержаться и в нерастворенном состоянии (в твердой фазе воды), присутствуя в виде взвешенных в воде труднорастворимых фосфатов, включая природные минералы, белковые, органические фосфорсодержащие соединения, остат­ ки умерших организмов и др. Фосфор в твердой фазе в природных водоемах обычно находится в донных отложениях, однако может встречаться, и в больших количествах, в сточных и загрязненных природных водах.

Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм 3 .

Формы фосфора в природных водах представлены в таблице ниже.

Таблица. Формы фосфора в природных водах

Химические формы Р

Общий

Фильтруемый
(растворенный)

Частицы

Общий растворенный фосфор

Общий фосфор в частицах

Ортофосфаты

Общий растворенный и взвешенный фосфор

Растворенные ортофосфаты

Ортофосфаты в частицах

Гидролизируемые кислотой фосфаты

Общие растворенные и взвешенные гидролизируемые кислотой фосфаты

Растворенные гидролизируемые кислотой фосфаты

Гидролизируемые кислотой фосфаты в частицах

Органический фосфор

Общий растворенный и взвешенный органический фосфор

Растворенный органический фосфор

Органический фосфор в частицах

Фосфор – важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0,4- 0,6 кг фосфора), со стоками с ферм (0,01-0,05 кг/сут на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сут . на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).

Один из вероятных аспектов процесса эвтрофикации – рост сине-зеленых водорослей (цианобактерий ), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях – при попадании большой массы водорослей внутрь организма – может развиваться паралич.

В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов. Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2- (около 90 %). В кислых водах неорганический фосфор присутствует преимущественно в виде H 2 PO 4 - .

Концентрация фосфатов в природных водах обычно очень мала – сотые, редко десятые доли миллиграммов фосфора в 1 дм 3 , в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород.

Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдаются обычно весной и летом, максимальные – осенью и зимой, в морских водах – соответственно весной и осенью, летом и зимой.

Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора.

Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

На рынке бытует мнение, что именно фосфаты «заставляют» работать комплекс ПАВ в моющем растворе и, чем их больше, тем эффективнее средство. Однако мировая химическая промышленность не стоит на месте и на сегодняшний день предлагает разумные альтернативы. Таким образом, постановка фосфатов во главу угла - ОПАСНОЕ ЗАБЛУЖДЕНИЕ.

Прокомментировать данный вопрос мы попросили Заместителя директора ООО «ТЕКСКЕПРО» Веру Батурину:

«Так как производство сырья для отечественных ПАВ разрушено, большое его количество поступает по импорту. Во многих случаях заключения на него по экологической безопасности, представляемые зарубежными фирмами-изготовителями, далеки от истины. Нередко под видом «биологически мягких» ПАВ нам стараются сбыть заведомо «биологически жесткие» продукты, не находящие применения в родных, промышленно развитых, пенатах. Составляющей ЭТИХ стиральных порошков, которая не претерпела изменений за всю их эволюцию, являются именно они - фосфаты. Проблема в том, что фосфаты, с современной точки зрения - нежелательный компонент. В жесткой воде моющая способность СМС резко снижается. Фосфаты - самый дешевый умягчитель воды. Этим оправдывается необходимость присутствия фосфатов в составе стиральных средств.

Обратившись к Большой Советской Энциклопедии, мы находим фосфаты в списке ингредиентов таких моющих средств советского производства, как «Эра», «Новость» и «Лотос». Было бы очень странно, если бы современные производители стирального порошка оставались на уровне производства застойных времен. Нежелательность и даже вред использования триполофосфатов связаны с проблемой эвтрофикации. Под этим термином понимают излишнее зарастание водоемов из-за чрезмерного поступления в воду биогенных элементов - азота и фосфора. Система очистки бытовых сточных вод не обеспечивает удаление фосфатов, попадающих из порошка вместе с водой в канализацию. Так фосфаты оказываются в водоемах и содействуют превращению рек в болота. Первый шаг решения проблемы - ограничение содержания фосфатов в СМС, второй - применение заменителей, более безвредных для здоровья и окружающей среды. Третьим шагом является внедрение такой системы очистки сточных вод, которая обеспечит удаление фосфатов. Следует отметить, что у нас значительная часть коммунальных стоков попадает в отечественные водоемы без очистки - очистными сооружениями оснащены в стране лишь около 30% населенных пунктов.

Но на Западе те же самые производители стиральных порошков уже давно нашли средства с аналогичными свойствами и без тех побочных эффектов, которыми обладает триполифосфат натрия. Существуют экологически безопасные, полностью биоразлагаемые моющие средства, доступные и в нашей стране. Ни один серьезный западный производитель уже давно не вкладывает средства, силы и знания в разработку стиральных препаратов на основе фосфатов, просто потому, что это никому не нужно в нормальных развитых странах.

Что должно отличать современные моющие средства от их предыдущего поколения? Каким они должно быть?

По нашему глубокому убеждению моющие средства, в первую очередь, должны быть эффективными не в ущерб окружающей среде, т.е. не содержать фосфатов, цеолитов, и других экологически вредных комплексообразователей, и, не в последнюю очередь - экономичными!

Исследовательский центр Кройслер (Chem. Fabrik KREUSSLER & Co., GmbH), с которым сотрудничает наша компания, создал систему постоянного контроля качества, сертифицированную на соответствие ISO 9001, которая гарантирует постоянное высочайшее качество всех поставляемых химикатов и их соответствие требованиям - IQNet, DIN EN ISO 9001, DQS.

Например, TREBON SI - высококонцентрированное моющее средство, в своей структурной концепции с многослойными силикатами занимает отдельное место. Он имеет способность связывать жесткость воды и ионы тяжелых металлов, стабилизировать уровень pH на оптимальном уровне и создавать щелочность для стирки. Целью создания сверх-компактной формулы TREBON SI позволило использовать его в малых количествах, что приводит к значительному увеличению производительности на 1 кг белья, и в дополнение, к сокращению транспортных расходов по доставке химикатов.

Процессы стирки с использованием препаратов серии «ТРЕБОН», «ДЕРВАЛ» и «ОТТАЛИН» обеспечивают ВЫСОКУЮ ЭФФЕКТИВНОСТЬ ОТСТИРОВАНИЯ МНОГОЧИСЛЕННЫХ И СЛОЖНЫХ ЗАГРЯЗНЕНИЙ, максимально щадящий профиль щелочности рН и термохимическую дезинфекцию текстиля (без применения хлора) с временным воздействием в 10 мин и температурой 60С.

Данные показатели являются самыми экономичными и эффективными из принятых на рынке (подтверждено исследованием института им. Роберта Коха, Берлин) как по временным, так и по температурным режимам, обеспечивая максимальную безопасность при дальнейшем использовании текстиля. Все эти препараты без фосфатов и цеолитов.»

Фосфор относится к числу биогенных элементов, имеющих особое значение для развития жизни в водных объектах. Соединения фосфора встречаются во всех живых организмах, они регулируют энергетические процессы клеточного обмена. При отсутствии соединений фосфора в воде рост и развитие водной растительно-сти прекращается, однако избыток их также приводит к негативным последст-виям, вызывая процессы эвтрофирования водного объекта и ухудшение качества воды.

Соединения фосфора попадают в природные воды в результате процессов жиз-недеятельности и посмертного распада водных организмов, выветривания и рас-творения пород, содержащих фосфаты, обмена с донными осадками, поступления с поверхности водосбора, а также с бытовыми и промышленными сточными во-дами. Загрязнению природных вод фосфором способствуют широкое применение фосфорных удобрений, полифосфатов, содержащихся в моющих средствах, флотореагентов и др.

Фосфаты в воде могут присутствовать в виде различных ионов в зависимости от величины рН. В водах соединения фосфора, как минеральные, так и органические могут при-сутствовать в растворенном, коллоидном и взвешенном состоянии. Переход со-единений фосфора из одной формы в другую осуществляется довольно легко, что создает сложности при определении тех или иных его форм. Обычно идентификация их осуществляется по процедуре, с помощью которой проводят химический анализ сточных вод . В том случае, когда анализируют фильтрованную пробу воды, говорят о раство-ренных формах, в противном случае - о суммарном содержании. Содержание взвешенных соединений фосфора находят по разности. Определение растворен-ных фосфатов (ортофосфатов) при анализе сточных вод осуществляется по реакции с молибдатом аммония и аскорбиновой кислотой с образованием молибденовой сини в исходной водной пробе, в то время как для определения полифосфатов в сточной воде требуется предварительно перевести их в фосфаты путем кислого гидролиза.

Для получения сравнимых результатов оп-ределения соединений фосфора и однозначной их интерпретации важно строгое соблюдение условий предварительной обработки проб и процедуры анализа сточных вод , в частности при определении растворенных форм проба должна быть отфильтрова-на как можно быстрее после отбора через фильтр с размером пор 0,45 мкм.

Концентрация фосфатов в незагрязненных природных водах может составлять тысячные, редко сотые доли мг/дм 3 . Повышение их содержания свидетельствует о загрязнении водного объекта. Концентрация фосфатов в воде подвержена се-зонным колебаниям, поскольку она зависит от интенсивности процессов фото-синтеза и биохимического разложения органических веществ Минимальные концентрации соединений фосфора наблюдаются весной и летом, максимальные - осенью и зимой

Уменьшение содержания фосфатов в воде связано с потреблением его водными организмами, а также переходом в донные отложения при образовании нераство-римых фосфатов

В «Экологический мониторинг» вы можете заказать комплексный анализ питьевой воды, ливневых сточных вод и промышленных, хозбытовых стоков. Заказать , можно оставив заявку на , или воспользовавшись формой обратной связи.

Фосфор общий

Сумма минерального и органического фосфора. Так же, как и для азота, обмен фосфором между его минеральными и органическими формами с одной стороны, и живыми организмами - с другой, является основным фактором, определяющим его концентрацию. Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм 3 .

Формы фосфора в природных водах

Химические формы фосфора Общий Фильтруемый (растворенный) Частицы
Общий Общий растворенный фосфор Общий фосфор в частицах
Ортофосфаты Общий растворенный и взвешенный фосфор Растворенные ортофосфаты Ортофосфаты в частицах
Гидролизируемые кислотой фосфаты Общие растворенные и взвешенные гидролизируемые кислотой фосфаты Растворенные гидролизируемые кислотой фосфаты Гидролизируемые кислотой фосфаты в частицах
Органический фосфор Общий растворенный и взвешенный органический фосфор Растворенный органический фосфор Органический фосфор в частицах

Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора (в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0,4-0,6 кг фосфора), со стоками с ферм (0,01-0,05 кг/сут. на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сут. на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий) . Один из вероятных аспектов процесса эвтрофикации - рост сине-зеленых водорослей (цианобактерий), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях - при попадании большой массы водорослей внутрь организма может развиваться паралич. В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов.

Фосфор органический

В этом разделе не рассматриваются синтезированные в промышленности фосфорорганические соединения. Природные соединения органического фосфора поступают в природные воды в результате процессов жизнедеятельности и посмертного распада водных организмов, обмена с донными отложениями. Органические соединения фосфора присутствуют в поверхностных водах в растворенном, взвешенном и коллоидном состоянии.

Фосфор минеральный

Соединения минерального фосфора поступают в природные воды в результате выветривания и растворения пород, содержащих ортофосфаты (апатиты и фосфориты) и поступления с поверхности водосбора в виде орто-, мета-, пиро- и полифосфат-ионов (удобрения, синтетические моющие средства, добавки, предупреждающие образование накипи в котлах и т.п.), а также образуются при биологической переработке остатков животных и растительных организмов. Избыточное содержание фосфатов воде, особенно в грунтовой, может быть отражением присутствия в водном объекте примесей удобрений, компонентов хозяйственно-бытовых сточных вод, разлагающейся биомассы. Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2- (около 90%). В кислых водах неорганический фосфор присутствует преимущественно в виде H 2 PO 4 - . Концентрация фосфатов в природных водах обычно очень мала - сотые, редко десятые доли милиграммов фосфора в литре, в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород. Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдается обычно весной и летом, максимальные — осенью и зимой, в морских водах — соответственно весной и осенью, летом и зимой. Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора . В методике оценки экологической ситуации, принятой Госкомэкологией РФ, рекомендован норматив содержания растворимых фосфатов в воде - 50 мкг/дм 3 . Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

Полифосфаты

Me n (PO 3) n , Me n+2 P n O 3n+1 , Me n H 2 P n O 3n+1

Применяются для умягчения воды, обезжиривания волокна, как компонент стиральных порошков и мыла, ингибитор коррозии, катализатор, в пищевой промышленности. Малотоксичны. Токсичность объясняется способностью полифосфатов к образованию комплексов с биологически важными ионами, особенно с кальцием . Установленное допустимое остаточное количество полифосфатов в воде хозяйственно-питьевого назначения составляет 3,5 мг/дм 3 (лимитирующий показатель вредности - органолептический).

Соединения серы

Сероводород и сульфиды.

Обычно в водах сероводород не содержится или же присутствует в незначительных количествах в придонных слоях, главным образом в зимний период, когда затруднена аэрация и ветровое перемешивание водных масс. Иногда сероводород появляется в заметных количествах в придонных слоях водоемов и в летнее время в периоды интенсивного биохимического окисления органических веществ. Наличие сероводорода в водах служит показателем сильного загрязнения водоема органическими веществами. Сероводород в природных водах находится в виде недиссоциированных молекул H 2 S, ионов гидросульфида HS - и весьма редко - ионов сульфида S 2- . Соотношение между концентрациями этих форм определяется значениями рН воды: при рН < 10 содержанием ионов сульфида можно пренебречь, при рН=7 содержание H 2 S и HS - примерно одинаково, при рН=4 сероводород почти полностью (99,8%) находится в виде H 2 S. Главным источником сероводорода и сульфидов в поверхностных водах являются восстановительные процессы, протекающие при бактериальном разложении и биохимическом окислении органических веществ естественного происхождения и веществ, поступающих в водоем со сточными водами (хозяйственно-бытовыми, предприятий пищевой, металлургической, химической промышленности, производства сульфатной целлюлозы (0,01-0,014 мг/дм 3) и др.). Особенно интенсивно процессы восстановления происходят в подземных водах и придонных слоях водоемов в условиях слабого перемешивания и дефицита кислорода. Значительные количества сероводорода и сульфидов могут поступать со сточными водами нефтеперерабатывающих заводов, с городскими сточными водами, водами производств минеральных удобрений. Концентрация сероводорода в водах быстро уменьшается за счет окисления кислородом, растворенным в воде, и микробактериологических процессов (тионовыми, бесцветными и окрашенными серными бактериями). В процессе окисления сероводорода образуются сера и сульфаты. Интенсивность процессов окисления сероводорода может достигать 0,5 грамм сероводорода на литр в сутки. Причиной ограничения концентраций в воде является высокая токсичность сероводорода, а также неприятный запах, который резко ухудшает органолептические свойства воды, делая ее непригодной для питьевого водоснабжения и других технических и хозяйственных целей. Появление сероводорода в придонных слоях служит признаком острого дефицита кислорода и развития заморных явлений , . Для водоемов санитарно-бытового и рыбохозяйственного пользования наличие сероводорода и сульфидов недопустимо (ПДК - полное отсутствие) .

Сульфаты

Присутствуют практически во всех поверхностных водах и являются одним из важнейших анионов. Главным источником сульфатов в поверхностных водах являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы:

2FeS 2 + 7O 2 + 2H 2 O = 2FeSO 4 + 2H 2 SO 4 ;
2S + 3O 2 + 2H 2 O = 2H 2 SO 4 .

Значительные количества сульфатов поступают в водоемы в процессе отмирания организмов и окисления наземных и водных веществ растительного и животного происхождения и с подземным стоком. В больших количествах сульфаты содержатся в шахтных водах и в промышленных стоках производств, в которых используется серная кислота, например, окисление пирита. Сульфаты выносятся также со сточными водами коммунального хозяйства и сельскохозяйственного производства. Ионная форма SO 4 2- характерна только для маломинерализованных вод. При увеличении минерализации сульфатные ионы склонны к образованию устойчивых ассоциированных нейтральных пар типа CaSO 4 , MgSO 4 . Содержание сульфатных ионов в растворе ограничивается сравнительно малой растворимостью сульфата кальция (произведение растворимости сульфата кальция L=6,1·10 -5). При низких концентрациях кальция, а также в присутствии посторонних солей концентрация сульфатов может значительно повышаться. Сульфаты активно участвуют в сложном круговороте серы. При отсутствии кислорода под действием сульфатредуцирующих бактерий они восстанавливаются до сероводорода и сульфидов, которые при появлении в природной воде кислорода снова окисляются до сульфатов. Растения и другие автотрофные организмы извлекают растворенные в воде сульфаты для построения белкового вещества. После отмирания живых клеток гетеротрофные бактерии освобождают серу протеинов в виде сероводорода, легко окисляемого до сульфатов в присутствии кислорода. Концентрация сульфатов в природной воде лежит в широких пределах. В речных водах и в водах пресных озер содержание сульфатов часто колеблется от 5-10 до 60 мг/дм 3 , в дождевых водах - от 1 до 10 мг/дм 3 . В подземных водах содержание сульфатов нередко достигает значительно больших величин. Концентрация сульфатов в поверхностных водах подвержена заметным сезонным колебаниям и обычно коррелирует с изменением общей минерализации воды. Важнейшим фактором, определяющим режим сульфатов, являются меняющиеся соотношения между поверхностным и подземным стоком. Заметное влияние оказывают окислительно-восстановительные процессы, биологическая обстановка в водном объекте и хозяйственная деятельность человека . Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека. Поскольку сульфат обладает слабительными свойствами, его предельно допустимая концентрация строго регламентируется нормативными актами. Весьма жесткие требования по содержанию сульфатов предъявляются к водам, питающим паросиловые установки, поскольку в присутствии кальция сульфаты образуют прочную накипь. Вкусовой порог сульфата магния лежит в пределах от 400 до 600 мг/дм 3 , для сульфата кальция - от 250 до 800 мг/дм 3 . Наличие сульфата в промышленной и питьевой воде может быть как полезным, так и вредным . ПДК в сульфатов составляет 500 мг/дм 3 , ПДК вр - 100 мг/дм 3 . Не замечено, чтобы сульфат в питьевой воде влиял на процессы коррозии, но если используются свинцовые трубы, то концентрация сульфатов выше 200 мг/дм 3 может привести к вымыванию в воду свинца.

Сероуглерод

Прозрачная летучая жидкость с резким запахом. Может в больших количествах попадать в открытые водоемы со сточными водами комбинатов вискозного шелка, заводов искусственной кожи и ряда других производств. При содержании сероуглерода в количестве 30-40 мг/дм 3 наблюдается угнетающее влияние на развитие сапрофитной микрофлоры. Максимальная концентрация, не оказывающая токсического действия на рыб — 100 мг/дм 3 . Сероуглерод является политропным ядом, вызывающим острые и хронические интоксикации. Поражает центральную и периферическую нервную систему, вызывает нарушения сердечно-сосудистой системы. Оказывает поражающее действие на органы желудочно-кишечного тракта. Нарушает обмен витамина В6 и никотиновой кислоты. ПДК в — 1,0 мг/дм 3 (лимитирующий показатель вредности — органолептический), ПДК вр — 1,0 мг/дм 3 (лимитирующий показатель вредности — токсикологический) , .